Закрыть ... [X]

Ручные металлодетекторы принцип работы

1. ОБЩИЕ ВОПРОСЫ

1.1. Принципы работы

Металлоискатель по принципу "передача-прием"

Термины "передача-прием" и "отраженный сигнал" в различных поисковых приборах обычно ассоциируются с методами типа импульсной эхо- и радиолокации, что является источником заблуждений, когда речь заходит о ме-таллоискателях. В отличие от различного рода локаторов, в металлоискателях рассматриваемого типа как передаваемый (излучаемый), так и принимаемый (отраженный) сигналы являются непрерывными, они существуют одновременно и совпадают по частоте.

Принцип действия металлоискателей типа "передача-прием" заключается в регистрации сигнала, отраженного (или, как говорят, переизлученного) металлическим предметом (мишенью), см. [4], стр. 225-228. Отраженный сигнал возникает вследствие воздействия на мишень переменного магнитного поля передающей (излучающей) катушки ме-таллоискателя. Таким образом, прибор данного типа подразумевает наличие как минимум двух катушек, одна из которых является передающей, а другая, приемной.

Основная принципиальная проблема, которая решается в металлоискателях данного типа, заключается в таком выборе взаимного расположения катушек, при котором магнитное поле излучающей катушки в отсутствие посторонних металлических предметов наводит нулевой сигнал в приемной катушке (или в системе приемных катушек). Таким образом, необходимо предотвратить непосредственное воздействие излучающей катушки на приемную. Появление же вблизи катушек металлической мишени приведет к появлению сигнала в виде переменной электродвижущей силы (э.д.с.) в приемной катушке.

Поначалу может показаться, что в природе существуют всего два варианта взаимного расположения катушек, при котором не происходит непосредственной передачи сигнала из одной катушки в другую (см. рис. 1, а и б) - катушки с перпендикулярными и со скрещивающимися осями.

Варианты взаимного расположения катушек датчика металлоискателя по принципу передача-прием
Рис. 1. Варианты взаимного расположения катушек датчика металлоискателя по принципу "передача-прием"

Более тщательное изучение проблемы показывает, что подобных различных систем датчиков металлоискате-лей может быть сколь угодно много. Но это - более сложные системы с количеством катушек больше двух, соответствующим образом включенных электрически. Например, на рис. 1, в изображена система из одной излучающей (в центре) и двух приемных катушек, включенных встречно по сигналу, наводимому излучающей катушкой. Таким образом, сигнал на выходе системы приемных катушек в идеале равен нулю, так как наводимые в катушках э.д.с. взаимно компенсируются.

Особый интерес представляют системы датчиков с компланарными катушками (т.е. расположенными в одной плоскости). Это объясняется тем, что с помощью металлоискателей обычно проводят поиск предметов, находящихся в земле, а приблизить датчик на минимальное расстояние к поверхности земли возможно только в том случае, если его катушки компланарны. Кроме того, такие датчики обычно компактны и хорошо вписываются в защитные корпуса типа "блина" или "летающей тарелки".

Основные варианты взаимного расположения компланарных катушек приведены на рис. 2, а и б. В схеме на рис. 2, а взаимное расположение катушек выбрано таким, чтобы суммарный поток вектора магнитной индукции через поверхность, ограниченную приемной катушкой, равнялся нулю. В схеме рис. 2, б одна из катушек (приемная) скручена в виде "восьмерки", так что суммарная э.д.с, наводимая на половинки витков приемной катушки, расположенные в одном крыле "восьмерки", компенсирует аналогичную суммарную э.д.с, наводимую в другом крыле "восьмерки". Возможны и другие разнообразные конструкции датчиков с компланарными катушками, например рис. 2, е.

Компланарные варианты взаимного расположения катушек металлоискателя по принципу передача-прием
Рис. 2. Компланарные варианты взаимного расположения катушек металлоискателя по принципу "передача-прием"

Приемная катушка расположена внутри излучающей. Наводимая в приемной катушке э.д.с. компенсируется специальным трансформаторным устройством, отбирающим часть сигнала излучающей катушки.

Металлоискатель на биениях

Название "металлоискатель на биениях" является отголоском терминологии, принятой в радиотехнике еще со времен первых супергетеродинных приемников. Биениями называется явление, наиболее заметно проявляющееся при сложении двух периодических сигналов с близкими частотами и приблизительно одинаковыми амплитудами и заключающееся в пульсации амплитуды суммарного сигнала. Частота пульсации равна разности частот двух складываемых сигналов. Пропустив такой пульсирующий сигнал через выпрямитель (детектор), можно выделить сигнал разностной частоты. Такая схемотехника долгое время была традиционной, однако в настоящее время она уже не используется ни в радиотехнике, ни в металлоискателях. И там, и там - на смену амплитудным детекторам пришли синхронные детекторы, но термин "на ручные металлодетекторы принцип работы биениях" остался до сих пор.

Принцип действия металлоискателя на биениях очень прост и заключается в регистрации разности частот от двух генераторов, один из которых является стабильным по частоте, а другой содержит датчик - катушку индуктивности в своей частотозадающей цепи. Прибор настраивается таким образом, чтобы в отсутствие металла вблизи датчика частоты двух генераторов совпадали или были очень близки по значению. Наличие металла вблизи датчика приводит к изменению его параметров и, как следствие, к изменению частоты соответствующего генератора. Это изменение, как правило, очень мало, однако изменение разности частот двух генераторов уже существенно и может быть легко зарегистрировано.

Разность частот может регистрироваться самыми различными путями, начиная от простейшего, когда сигнал разностной частоты прослушивается на головные телефоны или через громкоговоритель, и кончая цифровыми способами измерения частоты. Чувствительность металлоискателя на биениях зависит, кроме всего прочего, от параметров преобразования изменения полного сопротивления датчика в частоту.

Обычно преобразование заключается в получении разностной частоты стабильного генератора и генератора с катушкой датчика в частотозадающей цепи. Поэтому, чем выше будут частоты этих генераторов, тем больше будет разность частот в отклик на появление металлической мишени вблизи датчика Регистрация небольших отклонений частоты представляет определенную сложность. Так, на слух можно уверенно зарегистрировать уход частоты тонального сигнала не менее 10 Гц. Визуально, по миганию светодио-да, можно зарегистрировать уход частоты не менее 1 Гц. Другими способами можно добиться регистрации и меньшей разности частот, однако, эта регистрация потребует значительного времени, что неприемлемо для металлоис-кателей, которые всегда работают в реальном масштабе времени.

Способ выделения небольшой по величине разности частот двух генераторов порождает существенную техническую проблему - захват фазы. Проблема заключается в том, что два генератора, настроенные на очень близкие частоты, имеют тенденцию к паразитной взаимной синхронизации. Эта синхронизация проявляется в том, что при попытке приблизить каким-либо путем разностную частоту двух генераторов к нулю, по достижению разностной частотой некоторого порога происходит скачкообразный переход к состоянию генераторов, когда их частоты совпадают. Генераторы становятся синхронизированными. Физически явление захвата фазы объясняется нелинейностями, неизбежно присутствующими в любом генераторе, и паразитным проникновением сигнала одного генератора в другой (по цепям питания, через паразитные емкости и т.д.). Как показывает практика, если не прибегать к специальным ухищрениям типа оптоэлектронной развязки генераторов, то реально получить для разностной частоты порог наступления паразитной синхронизации порядка 10-4 относительно частоты генераторов. Отсюда можно получить оценку для частоты, на которой должен работать ме-таллоискатель на биениях, для получения максимальной чувствительности 10... 100 кГц и выше.

Селективность по металлам на таких частотах, весьма далеких от оптимальной, проявляется очень слабо. Кроме того, по сдвигу частоты генератора определить фазу отраженного сигнала практически невозможно. Поэтому селективность у металлоискателя на биениях отсутствует.

Отклик прибора на металлический объект обратно пропорционален шестой степени расстояния. Он практически такой же, как и у металлоискателей по принципу "передача-прием". Однако дальность обнаружения приборов данного типа обычно намного хуже вследствие эффекта паразитной синхронизации.

Металлоискатель по принципу электронного частотомера

Развитие измерительной электронной техники, и особенно, со встроенными микропроцессорами, теперь позволяет по-другому взглянуть на металлоискатели, принцип действия которых основан на измерении ухода частоты измерительного колебательного контура. Современные технические средства позволяют реализовать компактный прибор, позволяющий в реальном масштабе времени оценивать с высокой точностью небольшие девиации частоты измерительного генератора. И хотя построенный по такому принципу электронный металлоискатель является несомненным родственником прибора "на биениях", он заслуживает выделения в отдельный класс приборов, которые можно назвать металлоискателями по принципу электронного частотомера. Приборы такого класса, помимо массы сервисных возможностей микропроцессорной реализации, обладают еще одним принципиальным отличием от простейших приборов "на биениях" - возможностью.оценки знака приращения частоты. Учитывая, что ферромагнитная мишень обычно приводит к понижению частоты "измерительного генератора, а мишень из металла-неферромагнетика - к повышению, получаем замечательную возможность селекции мишеней по типу металла. Кроме того, данный класс приборов практически не подвержен описанному выше эффекту паразитной синхронизации, так как частота измерительного генератора и частоты прочих вспомогательных сигналов (тактовая частота микропроцессора) очень сильно различаются. Это позволяет повысить чувствительность.

Положительной для практики стороной является простота конструкции датчика и электронной части металлоис-кателей на биениях и по принципу частотомера. Такой прибор может быть очень компактным. Им удобно пользоваться, когда что-либо уже обнаружено более чувствительным прибором. Если обнаруженный предмет небольшой и находится достаточно глубоко в земле, то он может "затеряться", переместиться в ходе раскопок. Чтобы по многу раз не "просматривать" громоздким чувствительным металлоискателем место раскопок, желательно на завершающей стадии контролировать их ход компактным прибором малого радиуса действия, которым можно более точно узнать местонахождение предмета.

Однокатушечный металлоискатель индукционного типа

Слово "индукционный" в названии металлоискателей данного типа полностью раскрывает принцип их работы, если вспомнить смысл слова "inductio" (лат.) - наведение. Прибор данного типа имеет в составе датчика одну катушку любой удобной формы, возбуждаемую переменным сигналом. Появление вблизи датчика металлического предмета вызывает появление отраженного (переизлученного сигнала), который "наводит" в катушке дополнительный сигнал -электрический. Остается этот дополнительный сигнал только выделить.

Металлоискатель индукционного типа получил право на жизнь, главным образом, из-за основного недостатка приборов по принципу "передача-прием" - сложности конструкции датчиков. Эта сложность приводит либо к высокой стоимости и трудоемкости изготовления датчика, либо к его недостаточной механической жесткости, что обусловливает появление ложных сигналов при движении и снижает чувствительность прибора.

Структурная схема входного узла индукционного металлоискателя
Рис. 3. Структурная схема входного узла индукционного металлоискателя

Если задаться целью исключить у приборов по принципу "передача-прием" этот недостаток путем устранения самой его причины, то можно прийти к необычному выводу - излучающая и приемная катушки у металлоискателя должны быть объединены в одну! В самом деле, весьма нежелательные перемещения и изгибы одной катушки относительно другой в данном случае отсутствуют, так как катушка только одна и она одновременно и излучающая, и приемная. Налицо также предельная простота датчика. Платой за эти преимущества является необходимость выделения полезного отраженного сигнала на фоне значительно большего сигнала возбуждения излучающей/приемной катушки.

Выделить отраженный сигнал можно, если вычесть из электрического сигнала, присутствующего в катушке датчика, сигнал той же формы, частоты, фазы и амплитуды, что и сигнал в катушке при отсутствии металла вблизи. Как это можно реализовать одним из способов, показано на рис. 3.

Генератор вырабатывает переменное напряжение синусоидальной формы с постоянной амплитудой и частотой. Преобразователь "напряжение-ток" (ПНТ) преобразует напряжение генератора Ur в ток Iг, который задается в колебательный контур датчика. Колебательный контур состоит из конденсатора С и катушки L датчика. Его резонансная частота равна частоте генератора. Коэффициент преобразования ПНТ выбирается таким, чтобы напряжение колебательного контура ид равнялось напряжению генератора Ur (в отсутствие металла вблизи датчика). Таким образом, на сумматоре происходит вычитание двух сигналов одинаковой амплитуды, а выходной сигнал - результат вычитания -равен нулю. При появлении металла вблизи датчика возникает отраженный сигнал (иными работы словами, меняются параметры катушки датчика), и это приводит к изменению напряжения колебательного контура 11д. На выходе появляется сигнал, отличный от нуля.

На рис. 3 приведен лишь простейший вариант одной из схем входной части металлоискателей рассматриваемого типа. Вместо ПНТ в данной схеме в принципе возможно использование токозадающего резистора. Могут быть использованы различные мостовые схемы для включения катушки датчика, сумматоры с различными коэффициентами передачи по инвертирующему и неинвертирующему входам, частичное включение колебательного контура и т.д.

В схеме на рис. 3 в качестве датчика используется колебательный контур. Это сделано для простоты, чтобы получить нулевой сдвиг фаз между сигналами Ur и 11д (контур настроен на резонанс). Можно отказаться от колебательного контура с необходимостью точной настройки его на резонанс и использовать в качестве нагрузки ПНТ только катушку датчика. Однако коэффициент передачи ПНТ для этого случая должен быть комплексным, чтобы скорректировать сдвиг фазы на 90°, возникающий из-за индуктивного характера нагрузки ПНТ.

Импульсный металлоискатель

В рассмотренных ранее типах электронных металлоискателей отраженный сигнал отделяется от излучаемого либо геометрически - за счет взаимного расположения приемной и излучающей катушки, либо с помощью специальных схем компенсации. Очевидно, что может существовать и временной способ разделения излучаемого и отраженного сигналов. Такой способ широко используется, например, в импульсной эхо- и радиолокации. При локации механизм задержки отраженного сигнала обусловлен значительным временем распространения сигнала до объекта и обратно.

Применительно к металлоискателям, таким механизмом может быть и явление самоиндукции в проводящем объекте. Как использовать это на практике? После воздействия импульса магнитной индукции в проводящем объекте возникает и некоторое время поддерживается (вследствие явления самоиндукции) затухающий импульс тока, обусловливающий задержанный по времени отраженный сигнал. Он и несет полезную информацию, его и надо регистрировать.

Таким образом, может быть предложена другая схема построения металлоискателя, принципиально отличающаяся от рассмотренных ранее по способу разделения сигналов. Такой металлоискатель получил название импульсного. Он состоит из генератора импульсов тока, приемной и излучающей катушек, которые могут быть совмещены в одну, устройства коммутации и блока обработки сигнала.

Генератор импульсов тока формирует короткие импульсы тока миллисекундного диапазона, поступающие в излучающую катушку, где они преобразуются в импульсы магнитной индукции. Так как излучающая катушка - нагрузка генератора импульсов - имеет ярко выраженный индуктивный характер, на фронтах импульсов у генератора возникают перегрузки в виде всплесков напряжения. Такие всплески могут достигать по амплитуде десятков-сотен (!) вольт, однако использование защитных ограничителей недопустимо, так как оно привело бы к затягиванию фронта импульса тока и магнитной индукции и, в конечном счете, к усложнению отделения отраженного сигнала.

Приемная и излучающая катушки могут располагаться друг относительно друга достаточно произвольно, так как прямое проникновение излучаемого сигнала в приемную катушку и действие на нее отраженного сигнала разнесены по времени. В принципе, одна катушка может выполнять роль как приемной, так и излучающей, однако в этом случае гораздо сложнее будет развязать высоковольтные выходные цепи генератора импульсов тока и чувствительные входные цепи.

Устройство коммутации призвано произвести упомянутое выше разделение излучаемого и отраженного сигналов. Оно блокирует входные цепи прибора на определенное время, которое определяется временем действия импульса тока в излучающей катушке, временем разрядки катушки и временем, в течение которого возможно появление коротких откликов прибора от массивных слабопрово-дящих объектов типа грунта. По истечении же этого времени устройство коммутации должно обеспечить передачу сигнала с приемной катушки на блок обработки сигнала.

Блок обработки сигнала предназначен для преобразования входного электрического сигнала в удобную для восприятия человеком форму. Он может быть сконструирован на основе решений, используемых в металлоискателях других типов. К недостаткам импульсных металлоискателей следует отнести сложность реализации на практике дискриминации объектов по типу металла, сложность аппаратуры генерации и коммутации импульсов тока и напряжения большой амплитуды, высокий уровень радиопомех.

Магнитометры

Магнитометрами называется обширная группа приборов, предназначенных для изменения параметров магнитного поля (например, модуля или составляющих вектора магнитной индукции). Использование магнитометров в качестве металлоискателей основано на явлении локального искажения естественного магнитного поля Земли ферромагнитными материалами, например железом. Обнаружив с помощью магнитометра отклонение от обычного для данной местности модуля или направления вектора магнитной индукции поля Земли, можно с уверенностью говорить о наличии некоторой магнитной неоднородности (аномалии), которая может быть вызвана железным предметом.

По сравнению с рассмотренными ранее металлоискателями, магнитометры имеют гораздо большую дальность обнаружения железных предметов. Очень впечатляет информация о том, что с помощью магнитометра можно зарегистрировать мелкие обувные гвозди от ботинка на расстоянии 1 м, а легковой автомобиль - на расстоянии 10 м! Такая большая дальность обнаружения объясняется следующим. Аналогом излучаемого поля обычных металлоискателей для магнитометров является однородное (в масштабах поиска) магнитное поле Земли. Поэтому отклик прибора на железный предмет обратно пропорционален не шестой, а всего лишь третьей степени расстояния.

Принципиальным недостатком магнитометров является невозможность обнаружения с их помощью предметов из цветных металлов. Кроме того, даже если нас интересует только железо, применение магнитометров для поиска затруднительно - в природе существует большое разнообразие естественных магнитных аномалий самого различного масштаба (отдельные минералы, залежи минералов и т.п.). Однако при поиске затонувших танков и кораблей такие приборы вне конкуренции!

Радиолокаторы

Общеизвестен факт, что с помощью современных радиолокаторов можно обнаружить самолет на расстоянии нескольких сотен километров. Возникает вопрос: неужели современная электроника не позволяет создать компактное устройство, позволяющее обнаруживать интересующее нас предметы хотя бы на расстоянии нескольких метров9 Ответом является ряд публикаций, в которых такие устройства описаны.

Типичным для них является применение достижений современной микроэлектроники СВЧ, компьютерной обработки полученного сигнала. Использование современных высоких технологий практически делает невозможным самостоятельное изготовление этих устройств. Кроме того, большие габаритные размеры пока не позволяют их широко применять в полевых условиях.

К преимуществам радиолокаторов следует отнести принципиально более высокую дальность обнаружения -отраженный сигнал в грубом приближении можно считать подчиняющимся законам геометрической оптики и его ослабление пропорционально не шестой и даже не третьей, а лишь второй степени расстояния.


Источник: http://izmer-ls.ru/met/sche1-1.html


Поделись с друзьями



Рекомендуем посмотреть ещё:



Ручные металлодетекторы: устройство, функции, производители Самодельные матрацы

Ручные металлодетекторы принцип работы Ручные металлодетекторы принцип работы Ручные металлодетекторы принцип работы Ручные металлодетекторы принцип работы Ручные металлодетекторы принцип работы Ручные металлодетекторы принцип работы Ручные металлодетекторы принцип работы Ручные металлодетекторы принцип работы Ручные металлодетекторы принцип работы

ШОКИРУЮЩИЕ НОВОСТИ